Nucleus accumbens D2- and D1-receptor expressing medium spiny neurons are selectively activated by morphine withdrawal and acute morphine, respectively.
نویسندگان
چکیده
Opioids are effective analgesic agents but serious adverse effects such as tolerance and withdrawal contribute to opioid dependence and limit their use. Opioid withdrawal involves numerous brain regions and includes suppression of dopamine release and activation of neurons in the ventral striatum. By contrast, acute opioids increase dopamine release. Like withdrawal, acute opioids also activate neurons in the ventral striatum, suggesting that different populations of ventral striatal neurons may be activated by withdrawal and acute opioid actions. Here, immunofluorescence for the activity-related immediate-early gene, c-Fos, was examined in transgenic reporter mouse lines by confocal microscopy to study the specific populations of ventral striatal neurons activated by morphine withdrawal and acute morphine. After chronic morphine, naloxone-precipitated withdrawal strongly increased expression of c-Fos immunoreactivity, predominantly in D2-receptor (D2R) medium-sized spiny neurons (MSNs) of the nucleus accumbens (NAc) core and shell regions. By contrast, a single injection of morphine exclusively activated c-Fos immunoreactivity in D1-receptor expressing (D1R) MSNs of the core and shell of the NAc. These results reveal a striking segregation of neuronal responses occurring in the two populations of MSNs of the NAc in response to morphine withdrawal and acute morphine.
منابع مشابه
Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens.
Psychostimulant-induced alteration of dendritic spines on dopaminoceptive neurons in nucleus accumbens (NAcc) has been hypothesized as an adaptive neuronal response that is linked to long-lasting addictive behaviors. NAcc is largely composed of two distinct subpopulations of medium-sized spiny neurons expressing high levels of either dopamine D1 or D2 receptors. In the present study, we analyze...
متن کاملReversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.
Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little i...
متن کاملThe role of dopaminergic systems in opioid receptor desensitization in nucleus accumbens and caudate putamen of rat after chronic morphine treatment.
Morphine treatment of rats (60-70 mg/kg/day, 7 days) reduced delta opioid receptor-mediated inhibition of adenylyl cyclase activity in caudate putamen without any change in regulation by mu receptors. Earlier studies suggested that dopamine D1 and mu opioid receptors that regulate adenylyl cyclase are expressed preferentially by striato-nigral neurons, whereas adenosine A2a and delta1 opioid re...
متن کاملInteractive Effects of Acute and Chronic Lithium with Dopamine Receptor Antagonists on Naloxone-Induced Jumping in Morphine-Dependent Mice
In the present study, interactive effects of D1 and D2 dopamine receptors antagonists and different periods of lithium pretreatment on morphine dependence in mice have been investigated. This study was designed to investigate whether the hypothesis that lithium and dopaminergic mechanisms via their effects on phosphoinositide pathways and calcium flux could influence morphine withdrawal respons...
متن کاملRepeated morphine exposure decreased the nucleus accumbens excitability during short-term withdrawal.
It is well known that the nucleus accumbens plays an important role in drug reinforcing effect and relapse. However, the cellular neuroadaptations that take place in accumbens neurons after repeated drug exposure are still not well understood, especially for opioids. Here, we examined how nucleus accumbens neuronal excitability becomes affected in rats exposed to morphine using whole-cell patch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropharmacology
دوره 62 8 شماره
صفحات -
تاریخ انتشار 2012